首页> 外文OA文献 >Hand Gesture Recognition for Contactless Device Control in Operating Rooms
【2h】

Hand Gesture Recognition for Contactless Device Control in Operating Rooms

机译:操作系统中非接触式设备控制的手势识别   客房

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Hand gesture is one of the most important means of touchless communicationbetween human and machines. There is a great interest for commanding electronicequipment in surgery rooms by hand gesture for reducing the time of surgery andthe potential for infection. There are challenges in implementation of a handgesture recognition system. It has to fulfill requirements such as highaccuracy and fast response. In this paper we introduce a system of hand gesturerecognition based on a deep learning approach. Deep learning is known as anaccurate detection model, but its high complexity prevents it from beingfabricated as an embedded system. To cope with this problem, we applied somechanges in the structure of our work to achieve low complexity. As a result,the proposed method could be implemented on a naive embedded system. Ourexperiments show that the proposed system results in higher accuracy whilehaving less complexity in comparison with the existing comparable methods.
机译:手势是人机之间非接触式通信的最重要手段之一。通过手势命令手术室中的电子设备以减少手术时间和减少感染的可能性引起了极大的兴趣。在实施手势识别系统方面存在挑战。它必须满足诸如高精度和快速响应之类的要求。在本文中,我们介绍了一种基于深度学习方法的手势识别系统。深度学习被称为精确的检测模型,但是其高度复杂性阻止了它被构造为嵌入式系统。为了解决这个问题,我们对工作结构进行了一些更改以实现较低的复杂性。结果,所提出的方法可以在朴素的嵌入式系统上实现。我们的实验表明,与现有的可比方法相比,所提出的系统具有更高的准确性,同时具有更少的复杂性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号